00:00 / 00:00
Genetics
Achondroplasia
Alagille syndrome (NORD)
Familial adenomatous polyposis
Familial hypercholesterolemia
Hereditary spherocytosis
Huntington disease
Li-Fraumeni syndrome
Marfan syndrome
Multiple endocrine neoplasia
Myotonic dystrophy
Neurofibromatosis
Polycystic kidney disease
Treacher Collins syndrome
Tuberous sclerosis
von Hippel-Lindau disease
Albinism
Alpha-thalassemia
Beta-thalassemia
Cystic fibrosis
Friedreich ataxia
Gaucher disease (NORD)
Glycogen storage disease type I
Glycogen storage disease type II (NORD)
Glycogen storage disease type III
Glycogen storage disease type IV
Glycogen storage disease type V
Hemochromatosis
Krabbe disease
Leukodystrophy
Mucopolysaccharide storage disease type 1 (Hurler syndrome) (NORD)
Niemann-Pick disease type C
Niemann-Pick disease types A and B (NORD)
Phenylketonuria (NORD)
Polycystic kidney disease
Primary ciliary dyskinesia
Sickle cell disease (NORD)
Tay-Sachs disease (NORD)
Wilson disease
Cri du chat syndrome
Williams syndrome
Angelman syndrome
Prader-Willi syndrome
Beckwith-Wiedemann syndrome
Mitochondrial myopathy
Klinefelter syndrome
Turner syndrome
Fragile X syndrome
Friedreich ataxia
Huntington disease
Myotonic dystrophy
Down syndrome (Trisomy 21)
Edwards syndrome (Trisomy 18)
Patau syndrome (Trisomy 13)
Alport syndrome
Fragile X syndrome
Fabry disease (NORD)
Glucose-6-phosphate dehydrogenase (G6PD) deficiency
Hemophilia
Lesch-Nyhan syndrome
Mucopolysaccharide storage disease type 2 (Hunter syndrome) (NORD)
Muscular dystrophy
Ornithine transcarbamylase deficiency
Wiskott-Aldrich syndrome
X-linked agammaglobulinemia
Autosomal trisomies: Pathology review
Miscellaneous genetic disorders: Pathology review
Muscular dystrophies and mitochondrial myopathies: Pathology review
Achondroplasia
0 / 12 complete
of complete
In HBO’s adaptation of Game of Thrones, the character Tyrion Lannister is treated poorly by his father and siblings because he is born with dwarfism.
In a classic scene in the show, he says [“I’m guilty of being a dwarf! [father says: You’re not on trial for being a dwarf] Oh! Yes I am, I’ve been on trial for that my entire life].
Both Tyrion and his real-life counterpart—Peter Dinklage—have achondroplasia, an autosomal dominant genetic condition which is the most common cause of dwarfism and results from a heterozygous mutation in a gene called FGFR3, or fibroblast growth factor receptor 3, on chromosome 4, which codes for FGFR3 protein.
When FGFR3 protein binds fibroblast growth factors, or FGFs, it slows down the growth of certain bones.
The mutation causing achondroplasia is almost always the 380th amino acid, which is glycine, getting swapped out for arginine in the FGFR3 protein, and this swap causes the FGFR3 receptor to be constitutively active, which means constantly, active.
In other words, the mutation makes the receptor behave as though it’s binding an FGF even when it’s not, which sends a strong signal to inhibit bone growth.
More specifically, FGFR3 that is “always on” causes chondrocytes at the growth plate to proliferate slowly and become disorganized.
So, because of this it mostly affects endochondral bone formation, which is the process of bone forming right on previously-laid-down cartilage matrix, which causes the bone to elongate.
With the mutation though, this elongation is inhibited, which means long bones like the humerus and phalanges are affected.
Alright so the mutation affects endochondral bone formation, but bones that are products of intramembranous bone formation are way less affected.
This is where bone grows without an existing cartilage matrix.
This includes flat bones like the skull and ribs. Also an intramembranous process is appositional growth, which is the process of widening of long bones, so that happens pretty normally too.
Copyright © 2023 Elsevier, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
Cookies are used by this site.
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.