33,220views
00:00 / 00:00
Cardiovascular system
Cardiovascular system anatomy and physiology
Lymphatic system anatomy and physiology
Coronary circulation
Blood pressure, blood flow, and resistance
Pressures in the cardiovascular system
Laminar flow and Reynolds number
Resistance to blood flow
Compliance of blood vessels
Control of blood flow circulation
Microcirculation and Starling forces
Measuring cardiac output (Fick principle)
Stroke volume, ejection fraction, and cardiac output
Cardiac contractility
Frank-Starling relationship
Cardiac preload
Cardiac afterload
Law of Laplace
Cardiac and vascular function curves
Altering cardiac and vascular function curves
Cardiac cycle
Cardiac work
Pressure-volume loops
Changes in pressure-volume loops
Physiological changes during exercise
Cardiovascular changes during hemorrhage
Cardiovascular changes during postural change
Normal heart sounds
Abnormal heart sounds
Action potentials in myocytes
Action potentials in pacemaker cells
Excitability and refractory periods
Cardiac excitation-contraction coupling
Electrical conduction in the heart
Cardiac conduction velocity
ECG basics
ECG normal sinus rhythm
ECG intervals
ECG QRS transition
ECG axis
ECG rate and rhythm
ECG cardiac infarction and ischemia
ECG cardiac hypertrophy and enlargement
Baroreceptors
Chemoreceptors
Renin-angiotensin-aldosterone system
ECG QRS transition
0 / 7 complete
of complete
An electrocardiogram is also known as an ECG; the Dutch and German version of the word, elektrokardiogram, is shortened to EKG. It is a tool used to visualize, or “gram,” the electricity, or “electro,” that flows through the heart, or “cardio.” Specifically, an ECG tracing shows how the depolarization wave, which is a wave of positive charge, moves during each heartbeat by providing the perspectives of different sets of electrodes. This particular set of electrodes is called lead II; one electrode is placed on the right arm and the other on the left leg. Essentially, when the wave’s moving toward the left leg electrode, you get a positive deflection. This big, positive deflection corresponds to the wave moving down the septum. To read an ECG, there are a few key elements to keep in mind; one is to figure out the QRS transition.
The chest leads will have a mostly positive deflection, if a depolarization wave is moving towards them. The QRS transition zone refers to where the QRS complex switches from being mostly negative to mostly positive, from the point of view of the chest leads, V1 through V6, which “view” the heart through the horizontal plane. The QRS transition usually happens in lead V3 or V4, depending on factors such as chest lead placement and the exact anatomy of a person’s heart. So, the QRS transition tells us when the overall QRS vector is aligned in the direction of the chest leads; it’s a way of understanding what’s happening to the QRS axis in the horizontal plane.
The QRS transition in an ECG is the point at which the QRS complex changes from positive to negative or vice versa. This change reflects the depolarization of the ventricles, and is caused by the flow of current from the atria through to the ventricles. The QRS transition occurs when the ventricles reach their depolarization peak and is therefore a good measure of how well-paced the heartbeat is.
Copyright © 2023 Elsevier, except certain content provided by third parties
Cookies are used by this site.
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.