Mycobacterium leprae

00:00 / 00:00



Mycobacterium leprae



Mycobacterium leprae


0 / 14 complete

USMLE® Step 1 questions

0 / 1 complete

High Yield Notes

2 pages


Mycobacterium leprae

of complete


USMLE® Step 1 style questions USMLE

of complete

A 56-year-old man presents to the clinic due to nodular skin growth on the face and decreased sensation in both lower extremities. The patient immigrated from Southeast Asia ten years ago and has not seen a physician in many years. Physical examination shows erythematous macules, papules, and nodules on the face. There is also body hair loss, most notably in the eyebrows and eyelashes. Serum testing shows a CD4 count of 13 cells/mm3. A full-thickness skin biopsy is performed and shows polymorphonuclear leukocytes and bacteria. Which of the following is the most likely diagnosis in this patient?  

External References

First Aid









Mycobacterium leprae p. , 193

Dapsone p. 191

Mycobacterium leprae p. , 193

Mycobacterium leprae

animal transmission p. 147

diagnosis p. 139

rifamycins/dapsone p. 193

Rifampin p. 193

Mycobacterium leprae p. , 193

External Links


Content Reviewers

Mycobacterium leprae is a rod-shaped bacteria which was first discovered in 1873 by Hansen.

Mycobacterium leprae is a non tuberculous mycobacteria and it causes a disease called leprosy, or Hansen disease. In US, the animal reservoir for Mycobacterium leprae are armadillos.

Now, Mycobacterium leprae it’s an acid-fast bacillus which means it’s resistant to decolorization by acids and it has a high content of mycolic acid in its cell wall, which makes it waxy, hydrophobic and impermeable to routine stain such as Gram stain.

So, it needs special staining methods to be visualized such as Ziehl-Neelsen staining which uses carbol fuchsin combined with phenol which is able to penetrate the waxy mycobacterial cell wall.

So, the stain binds to the mycolic acid in the mycobacterial cell wall and after staining, an acid decolorizing solution is applied which removes the red dye from the background cells, tissue fibres, and any organisms in the smear except Mycobacteria, which retain the dye.

So Mycobacterium leprae appears bright red on a blue background. Other staining methods can be used such as Kinyoun staining, in which the bacteria appear bright red on a green background and fluorescence microscopy using specific fluorescent dyes such as auramine-rhodamine stain.

Now, Mycobacterium leprae is an obligate intracellular microorganism, which means it can survive only inside cells, and it’s an obligate aerobe which means it can survive only in the presence of oxygen.

Finally, Mycobacterium leprae grows best at cool temperatures, between 27 to 33 degrees Celsius, and it proliferates slowly and it cannot be cultivated in vitro.

Instead, it can be inoculated in nine-banded armadillos, which have a much lower body temperature than most mammals and, like humans, are susceptible to leprosy.

Now, Mycobacterium leprae can enter the body through the lungs or broken skin.

Once inside the body, it goes for regions in which the temperature is lower than the rest of the body such as skin, peripheral nerves and mucosa of the upper respiratory tract.


Mycobacterium leprae is a species of acid fast bacillus, obligate intracellular, aerobic bacteria, which primarily causes leprosy, a chronic and disfiguring skin disease. It is spread from person to person through contact with nasal secretions and skin lesions and can cause nerve damage and other organ damage if left untreated.

The diagnosis involves identifying Mycobacterium leprae bacteria in a skin biopsy with microscopy or PCR. Treatment typically involves a combination of antibiotics, such as dapsone or rifampin, and other drugs such as clofazimine or prednisone.


Copyright © 2023 Elsevier, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

Cookies are used by this site.

USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.