00:00 / 00:00
0 of 27 complete
2024
2023
2022
2021
hypothyroidism p. 248
hypothyroidism with p. 345
photosensitivity p. 249
pulmonary fibrosis p. 250
restrictive lung disease p. 694
amiodarone and p. 327
amiodarone as p. 327
amiodarone p. 327
amiodarone p. 327
amiodarone and p. 327
amiodarone and p. 327
amiodarone and p. 327
Antiarrhythmic medications help control arrhythmias, or abnormal heart beats.
There are five main groups of antiarrhythmic medications: class I, also known as sodium-channel blockers; class II, also called beta-blockers; class III, also known as potassium-channel blockers; class IV, also called calcium-channel blockers; and miscellaneous antiarrhythmics, or unclassified antiarrhythmics. Now, we’ll focus on class III antiarrhythmic medications.
Normally, an electrical signal starts at the sinoatrial or SA node in the right atrium, then propagates out through both atria, making them contract.
The signal gets delayed a bit as it goes through the atrioventricular or AV node, then goes through the Bundle of His to the Purkinje fibers of both ventricles, making them contract as well.
When the signal doesn’t follow this pathway, we get abnormal heartbeats called an arrhythmia, and there are two main causes - abnormal automaticity and abnormal reentry.
Abnormal automaticity is when an area of the heart, say, a part of the ventricle, begins to fire off action potentials at a rate that’s even faster than the SA node.
As a result, this area of the heart essentially flips roles with the SA node, firing so fast that the pacemaker cells in the SA node don’t get a chance to fire. At that point, the heartbeat is being driven by the ventricles.
Alternatively, there can be an abnormal reentry which often results from scar tissue in a ventricle after a heart attack.
Scar tissue doesn’t conduct electricity, so the signal just goes around and around the scar, and each cycle can cause the ventricles to contract.
Alternatively, there might be an accessory, or extra pathway between the atria and the ventricles, like the bundle of Kent in Wolff-Parkinson-White syndrome.
Here, the signal might move back up the accessory pathway, since oftentimes it’s bidirectional, meaning the signal can go from atrium to ventricle as well as from ventricle to atrium.
Copyright © 2024 Elsevier, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
Cookies are used by this site.
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.